





The Role of Skills Development in Driving Female Participation, Contribution and Inclusion in the Energy Sector

By Dr Nandi Malumbazo
School of Chemical and Metallurgical Engineering
Wits University
Email: Nandi.Malumbazo@wits.ac.za





"Here's to strong women.

May we know them. May we be them. May we raise them."

Unknown

#### Contents

- Introduction
- Challenges faced by Women in workplace
- Success factors to drive gender equality
- Energy sector in SA
- Energy resource distribution in SA
- Energy demands in SA
- Careers in the Energy Value Chain
- Energy architecture framework "Just energy transition"
- SA's energy wish list to the year 2040
- UN Sustainable development goals
- Success factors for Young Women in STEM





### Introduction

- There are more women than men in South Africa, women comprise 51% of the total population (56,5 million).
- Despite women making up just over half of the population, they remain relatively
   unrepresented in positions of authority and power.
- If we consider the entire workforce, women fill 44% of skilled posts, which includes managers, professionals and technicians.
- The Women Empowerment and Gender Equality Bill in particular calls for 50% representivity in decision-making positions.





### Introduction

- The International Energy Agency states that, despite accounting for 48% of the global workforce, women constitute only about 22% of the traditional energy (fossil fuel sector) and 32% in renewable energy sector.
- The lowest performing energy sub-sector is mining of coal.
- Women's participation in the energy sector is below that of the broader economy and varies widely across energy sub-sectors.
- According to the World Economic Forum, only 55% of sub-Saharan Africa's human capital potential is utilised in comparison with a global average of 65%.
- The World Bank has noted that 'one of the key underlying factors affecting human capital in Africa is the low level of empowerment of women and girls'.





# Challenges faced by women in a workplace

- External Challenges:
  - Women are harassed, stressed, isolated and excluded.
  - "Glass walls" effect in core functions.
  - Motherhood is still considered as a challenge.
  - Previously disadvantage background.

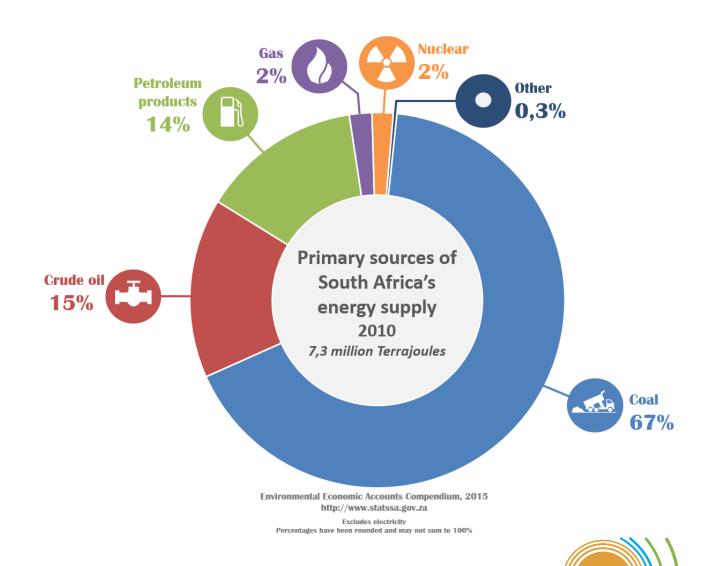
#### **Internal Challenges:**

- Low self-esteem.
- Fear of work-life imbalance.
- Lack of a defined career progression/path.





### Success factors to drive gender equality


- A direct way to incentivise the greater inclusion of women in the energy sector is through policies and regulations by national governments, financing institutions, donors and other role-players that require a certain percentage of women participation in new energy sector investments.
- The above can serve as an important tool to strengthen gender mainstreaming in the energy sector, however success of such is dependant on the ff:
  - Comprehensive support measures that improve access to financial, technical and capacity building measures for women wishing to participate in the energy sector,
    - Deploy gender diversity and inclusion policies which will target marketing tailored for women.
    - Offer a more flexible development programmes and work models to high potential women.
    - Develop a well-defined career paths for women
  - Effective monitoring, evaluation and reporting to assess progress in adherence to genderbased requirements.

## Energy sector in SA

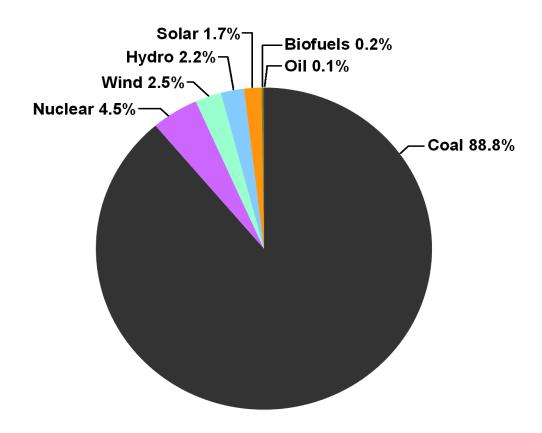
#### Energy comprise of two sources:

- Primary and secondary energy sources.
  - Primary sources are natural or refined resources
  - Secondary sources are products produced from primary sources

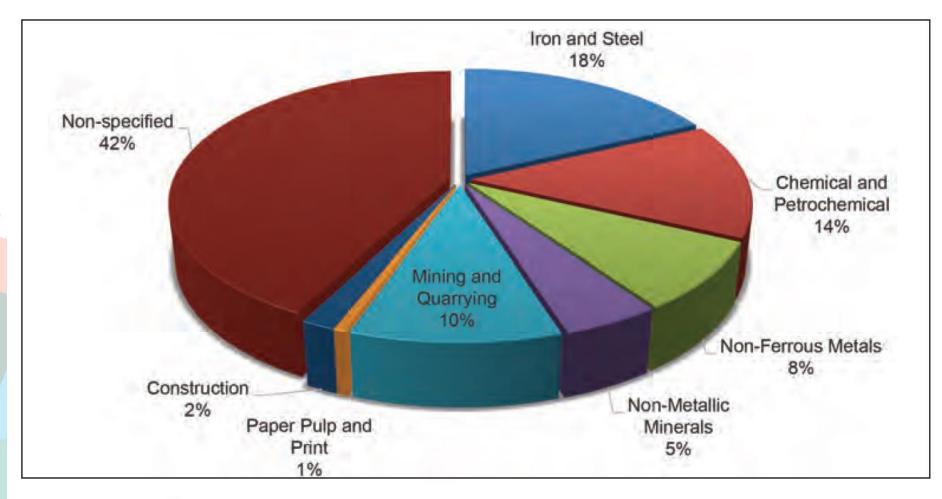


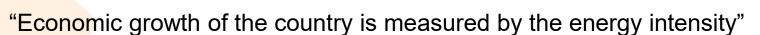


**FW** SETA




## Energy Resource distribution in SA

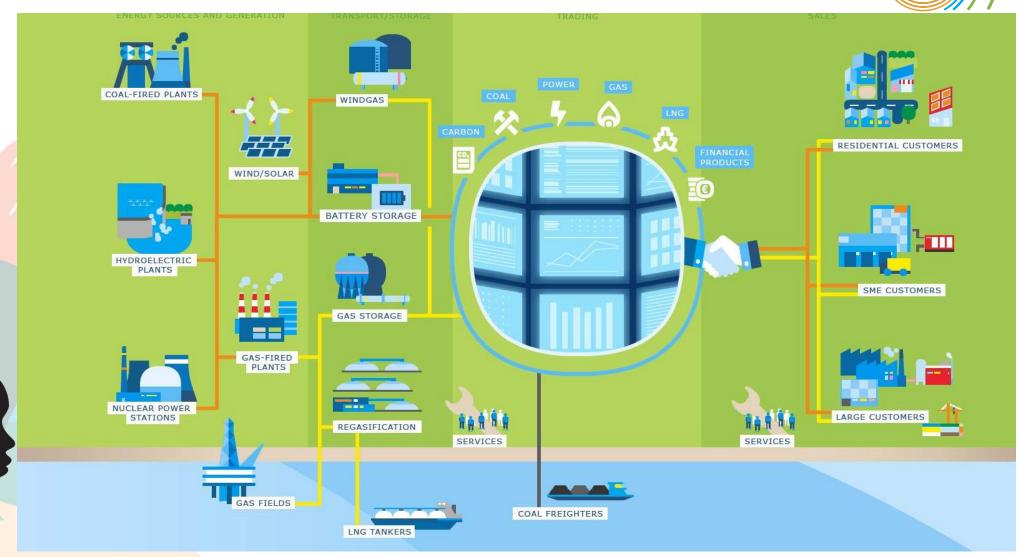

- South Africa is planning to shift away from coal in the electricity sector.
- The country aims to decommission 34 GW of coal-fired power capacity by 2050.
- It also aims to build at least 20 GW of renewable power generation capacity by 2030.
- South Africa is the world's 14th largest emitter of greenhouse gases.


Strangth for

#### **Electricity production in South Africa in 2018 (IEA)**



## Energy demands in SA







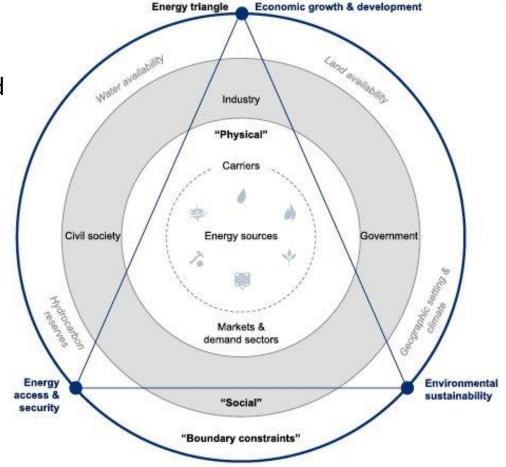


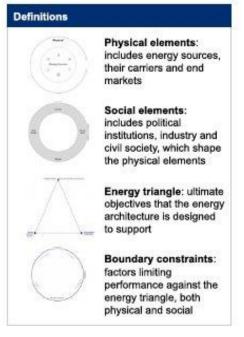

## Careers in the Energy Value Chain



**EW** SETA




### Energy architecture framework


#### **Just Energy Transition:**

- Reliable baseload is needed to support the economic growth of the country.
- Enhanced by deployment of renewable energy technologies and more advanced power generation technologies (HELE) – to achieve a low carbon economy.
- New normal can be defined differently and the concept of "Just Energy Transition" is a diverse concept.



Figure 1: Energy architecture conceptual framework









# SA's energy wish list to the year 2040 (IRP2019)



4200

3600

3000

2400

1800

1200



| Current Base                               | Coal 37 149 | Coal<br>(Decommissioning) | Nuclear<br>1860 | Hydro<br>2 100 | Storage | PV         |       | Wind  | CSP  | Gas &<br>Diesel | Other<br>(Distributed<br>Generation,<br>CoGen,<br>Biomass,<br>Landfill) |
|--------------------------------------------|-------------|---------------------------|-----------------|----------------|---------|------------|-------|-------|------|-----------------|-------------------------------------------------------------------------|
|                                            |             |                           |                 |                | 2 912   | 100        | 1 474 | 1980  | 300  | 3 830           | 499                                                                     |
| 2019                                       | 2 155       | -2313                     |                 |                |         |            |       | 244   | 300  |                 | Affocation to                                                           |
| 2020                                       | 1 433       |                           |                 |                |         | 114<br>300 |       | 300   |      |                 | the extent of<br>the short term<br>capacity and                         |
| 2021                                       | 1 433       |                           |                 |                |         |            |       | 818   |      |                 |                                                                         |
| 2022                                       | 711         | 844                       |                 |                | 513     | 400        | 1000  | 1600  |      |                 | energy gap.                                                             |
| 2023                                       | 750         | 565                       |                 |                |         | 1 18       | 1000  | 1600  |      |                 | 500                                                                     |
| 2024                                       |             |                           | 1860            |                |         |            |       | 1600  |      | 1000            | 500                                                                     |
| 2025                                       |             |                           |                 | j j            |         |            | 1000  | 1600  | - 2  |                 | 500                                                                     |
| 2026                                       |             | 1219                      |                 |                |         |            |       | 1600  |      |                 | 500                                                                     |
| 2027                                       | 750         | 817                       |                 |                |         |            |       | 1 600 |      | 2000            | 500                                                                     |
| 2028                                       |             |                           | j j             | 1 1            |         | -          | 1000  | 1600  |      |                 | 500                                                                     |
| 2029                                       |             | 1894                      |                 |                | 1575    |            | 1000  | 1 600 |      |                 | 500                                                                     |
| 2030                                       |             |                           |                 | 2 500          |         | - 0        | 1 000 | 1600  |      |                 | 500                                                                     |
| TOTAL INSTALLED CAPACITY by<br>2030 (MW)   | 33364       |                           | 1860            | 4600           | 5000    | - 8        | 8288  | 17742 | 600  | 6380            |                                                                         |
| % Total Installed Capacity (% of MW)       | 43          |                           | 2.36            | 5.84           | 6.35    | 1          | .0.52 | 22.53 | 0.76 | 8.1             |                                                                         |
| % Annual Energy<br>Contribution (% of MWh) | 58.8        |                           | 4.5             | 8.4            | 1.2*    |            | 6.3   | 17.8  | 0.6  | 1.3             |                                                                         |



- 2030 Coal Installed Capacity is less capacity decommissioned between years 2020 and 2030
- Koeberg power station rated / installed capacity will revert to 1926 MW (original design capacity) following design life extension work.
- Other / Distributed generation includes all generation facilities in circumstances in which the facility is operated solely to supply electricity to an end-use customer within the same property with the facility

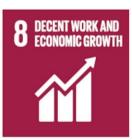
### SDGs












































# Opportunities for Women in the Energy Sector

"You can be anything that you want to be, if only you believe with sufficient conviction and act in accordance with your faith; for whatever the mind can conceive and believe, it can achieve."

By Napoleon Hill





# Success factors for Young Women in STEM

- Decide on what you want to be.
- Have a plan on how to get there.
- Get a mentor.
- Believe in yourself/be your number one fan.
- Don't be apologetic about your existence.
- Know your strong strengths and take advantage of them.
- Keep good networks.
- Be hard at work.
- Be willing to learn new things.
- Know when to let go.











## T H A N K Y O U