Energy Transition Accelerating Wind Power Deployment in South Africa

April 2021

Energy

Resolving the Energy Crisis

Demand exceeds supply

Eskom Energy Availability Factor below 65%

Maintenance backlog , several plants due for decommissioning

LOAD SHEDDING

Government Commitments to Resolve Energy Crisis

Issuing of Section 34
Determination to enable
procurement of new
generation capacity

Fast-tracking of Small Scale Embedded Generation applications by the Regulator

Put in place measures to enable municipalities in good financial standing to procure their own power from IPPs Opening of bid window 5 of the renewable energy Independent Power Producers (IPPs) Procurement Programme

Fast-tracking of I applications by commercial and industrial users to produce electricity for own use above 1MW

procurement of emergency power from projects that can deliver electricity into the grid within three to 12 months from approval

We will negotiate supplementary power purchase agreements to acquire additional capacity from existing wind and solar plants

accelerating the completion of bid window 4 RE projects

Energy Transition Drivers: Decarbonisation

Currently coal power
 contributes 77% of the total
 energy generation (Department
 of Energy 2017)

Transition driven by climate change policies and international commitments

Renewable energy is arguably one of the viable options to urgently decarbonise the energy system at low cost.

The energy sector contributes about 80% of the country's total greenhouse gas emissions of which about 40% is from electricity generation (Department of Environmental Affairs, 2012).

 Policy decision to incorporate renewable energy into the energy mix, the aim was not only to address the energy security issue, but also deal with environmental issues as well as derive economic benefits.

Socio-economic benefits are closely tied with the roll-out of renewable energy.

Energy Transition Drivers: Decentralisation

Decentralisation – moving away from a centralised single vertically integrated utility to more decentralised generation through utility scale independent power producer projects and small scale embedded generation projects.

Introducing a very large number of small-capacity units that are all connected to the power grid, natural gas supply network or urban heating/cooling networks to generate energy from renewable sources at local level.

Energy produced closer to where it will be used, rather than at a large plant elsewhere and sent through the national grid.

Reduces transmission losses and lowers carbon emissions

Long term decentralized energy can offer more competitive prices than traditional energy

Energy Transition Drivers: Decentralisation

Democratisation - opening the energy generation business to private entities. Non-discriminatory open access to key energy infrastructure such as the national electricity grid

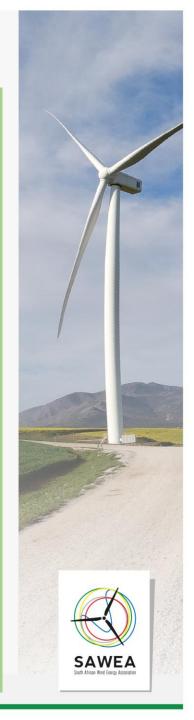
REIPPPP, where for the first time in South Africa the Independent Power Producer were able to develop energy projects (Renewable Energy, Coal, and Gas) and sell it to the national power utility through a government run programme.

From 2015 to 2018 we saw a stale-mate between the national power utility and the independent power producers in terms of signing of the power purchase agreements for the 4th bidding round projects which was awarded in 2014. Any change process is bound to experience challenges as it challenges the status quo which leads to incumbents' insecurity and feeling the need to protect their territory.

The impasse on signing of PPAs signalled the need to restructure the energy industry from a centralised single vertically integrated utility to separate entities handling generation, transmission and distribution. This will facilitate equitable grid access

Energy Transition Drivers: Decentralisation

Source: https://www.dnvgl.com/power-renewables/themes/digitalization/index.html


- Key enabler of the transition to a low-carbon energy system because it enables integration and a smarter grid and offer a way to manage the changes
- The energy sector stands to benefit quite substantially from the use of digital technologies that enable the power system to integrate a higher share of renewable energy while improving the general efficiency of the system and resulting in optimal use of energy.
- Digitisation of the energy transition signals the launch of the smart grid & smart meters

- Provide a secure communication platform which will make the electricity supply system fit for the energy transition
- Enables creation a local energy marketplace based on peer-to-peer energy trading in the community and then looking at layering on
- Additional benefits such as being able to offer demand response
- Decentralized energy transactions, renewable energy integration, metering and billing
- Data sharing between asset owners, operators, regulators and investors
- Benchmarking of asset performance, application of machine learning across large BIG DATA numbers of diverse assets
- Enhanced forecasting models, new insights into large operational asset data sets

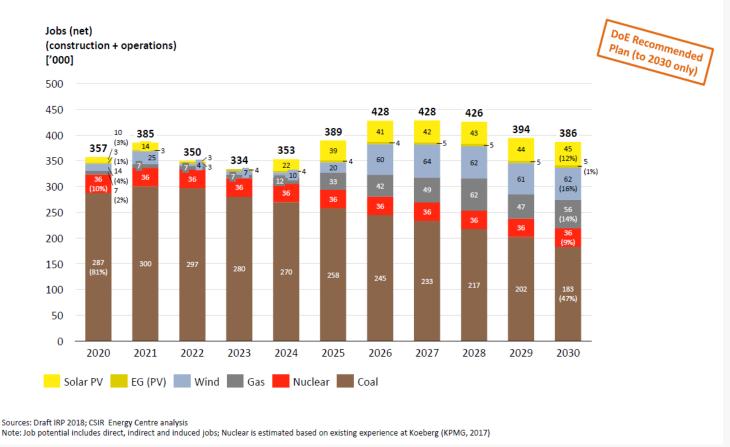
Energy Transition Drivers: Decentralisation

- In the electricity sector, renewables and battery technology are continuing
 to become cheaper in many applications. Government should encourage
 investment in small-scale embedded generation (SSEG) that offers low
 carbon energy services and leverages private capital.
- Households and companies will increasingly make this investment because
 of the economic business case and due to energy security and
 environmental benefits. However, this will threaten revenue models of
 Eskom and municipalities and complicate the system, making planning
 more difficult (risking load shedding and blackouts).
- The grid will remain an affordable way to balance these systems (for example, when the sun is not shining) and to provide a market for generators to sell surplus power.
- Eskom and municipalities need to evolve their revenue models to benefit from the trading of electricity across the transmission and distribution grid.

Just Energy Transition

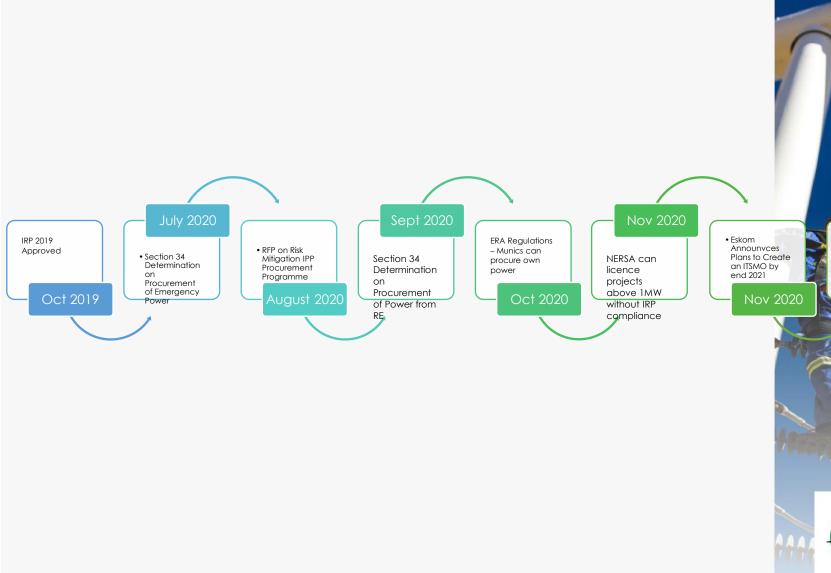
 The world has moved past the debate on whether renewable energy is viable or not.
 Even the need to scale it up is undisputed today as more and more countries increase the renewable energy share of their electricity generation.

 The cost of renewable energy, particularly solar PV and wind, has reduced drastically and therefore one cannot argue against renewable energy from an energy system cost perspective. It is the socio-economic impacts of renewable energy that require analysis and understanding.


Just Energy Transition

There are several parties further who oppose installation of RE plants in South Africa based mainly, on the perception that installing more RE plant will lead to further job losses for the labour force currently employed by both coal mines and coal fired power plant. This is material issue unions for trade and requires further stakeholder processes to manage any changes in the structure of the sector.

The renewable energy
 sector has a huge
 potential to create more
 decentralised
 employment across the
 value chain but it seems
 the Cobenefits of
 renewable energy are
 not widely publicised.


Just Energy Transition – Jobs Impact

Source: CSIR Energy Centre

Energy Policy Progress during 2020

Nov 2020

Minister

Announces

Dec 2020

plans to issue

REIPPPP RFP by

Energy Policy Progess Facilitating Growth of RE in SA

Approval of IRP 2019

Municipalities procuring own power from IPP

Private Sector PPA, easing of regulatory environment

Procurement of additional power from existing IPPs

Wind sector as key to Post Covid 19 Economic Recovery

Issuing of Bid Window 5 RFP

Role of wind energy sector in Just Energy Transition

IRP 2019

	Coal	Coal (Decommissioning)	Nuclear	Hydro	Storage	PV	Wind	CSP	Gas & Diesel	Other (Distributed Generation, CoGen, Biomass, Landfill)
Current Base	37 149		1 860	2 100	2 912	1 474	1 980	300	3 830	499
2019	2 155	-2373					244	300		Allocation to
2020	1 433	-557				114	300			the extent of the short term
2021	1 433	-1403				300	818			capacity and
2022	711	-844			513	400 1000	1600			energy gap.
2023	750	-555				1000	1600			500
2024			1860				1600		1000	500
2025						1000	1600			500
2026		-1219					1600			500
2027	750	-847					1 600		2000	500
2028		-475				1000	1 600			500
2029		-1694			1575	1000	1 600			500
2030		-1050		2 500		1 000	1 600			500
TOTAL INSTALLED CAPACITY by 2030 (MW)	33364		1860	4600	5000	8288	17742	600	6380	
% Total Installed Capacity (% of MW)	43		2.36	5.84	6.35	10.52	22.53	0.76	8.1	
% Annual Energy Contribution (% of MWh)	58.8		4.5	8.4	1.2*	6.3	17.8	0.6	1.3	

- IRP 2019
 - 14.4 GW wind
 - 6 GW Solar PV
- 11017 GW of coal to be decommissioned

Wind Power Capacity in the IRP 2019

14.4 GW
of
Wind
Power

Ministerial Determinations

Year	Wind	PV	Storage	Gas	Coal
2022	1600	1000			
2023	1600	1000			750
2024	1600			1000	
2025			513		
2026					
2027				2000	750
Total	4800	2000	513	3000	1500

The Road to New Generation Capacity

SAWEA

Economic Impacts of Wind Power Investments (As of Sep 2020)

Total capacity Procured	3366 MW Procured
Capacity in Operation	871 MW under construction (7 Projects) 2,495 MW in operation (27 Projects)
Total Wind Energy Investment	R80.6 Billion of which R13.2 Billion is FDI
Total Energy Generated	28 402 GWh generated
Job Creation	Constr: 16113 job yrs O&M 13 222 job yrs over 20 yrs
Local content	R20.8 billion (47%)
Ownership	Black South African own 31% of wind projects
Community Ownership	10% owned by communities
Preferential Procurement	R 24.9 billion BBBEE share of spend to date
Enterprise Development	R154.2 million spent to date
Socioeconomic Development	R518.2 million spend to date
Emission Reduction	28.8 Mtons CO2Eq to date

Wind Energy Tariff Reduction over Bid Windows

Bid Windows	Price Cap	Bid Tariff
BW 1 (ZARc)	115	114
BW 2 (ZARc)	115	90
BW 3 (ZARc)	100	74
BW4(b) (ZARc)	76	72
BW 4(a) (ZARc)	Removed	62

Ownership Targets in REIPPPP

Ownership	BW 1		BW 2		BW 3, 3.5 & 4	
	Min %	Targe † %	Min %	Targe †%	Min %	Targ et %
Shareholding by local communities in the seller	2.5	5	2.5	5	2.5	5
Shareholding by black people and/or black enterprises in the seller	12	30	12	30	12	30
Shareholding by black people and/or black enterprises in the construction contractor	8	20	8	20	8	20
Shareholding by black people and/or black enterprises in the operations contractor	8	20	8	20	8	30

Types of SED Projects Supported by Wind Farms

Women Empowerment

Capacity Building and Skills Development

Health Care

Welfare and Poverty Alleviation

Education

Social Infrastructure

Environment

Barriers to RE Deployment

Political Will & Policy Certainty

- IRP Not Updated Regularly
- Procurement Gaps
- Regulatory Environment
- Local Content
- Investor Confidence

Permitting

- Environmental Impact Assessments
- Civil Aviation Permits
- Land availability

Funding Availability

- Funding for black participation
- Government Incentives
- Financiers requirements sometimes not in sync with gov objectives
- Government Guarantees

Grid Capacity and Connection

- Grid availability in low resource areas
- Grid connection delays affecting projects CODs
- System stability curtailments

Single Buyer Model

- Eskom as a buyer
- Independent System
 Operator required
- Market for IPPs restricted to utility scale transactions with government - REIPPPP

Skills availability and Transfer

- Local skills development to match deployment rate
- Reskilling in the context of JET

Thank-you

Ntombifuthi Ntuli
CEO
SAWEA
ntombifuthi@sawea.co.za

